<xarray.Dataset> Size: 1GB
Dimensions: (face: 13, Y: 90, X: 90, Z: 50, Yp1: 90, Xp1: 90, Zp1: 51,
Zl: 50, Zu: 50, time: 3, nv: 2, time_midp: 2)
Coordinates: (12/42)
CS (face, Y, X) float32 421kB dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
Depth (face, Y, X) float32 421kB dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
HFacC (Z, face, Y, X) float32 21MB dask.array<chunksize=(50, 13, 90, 90), meta=np.ndarray>
HFacS (Z, face, Yp1, X) float32 21MB dask.array<chunksize=(50, 13, 90, 90), meta=np.ndarray>
HFacW (Z, face, Y, Xp1) float32 21MB dask.array<chunksize=(50, 13, 90, 90), meta=np.ndarray>
PHrefC (Z) float32 200B dask.array<chunksize=(50,), meta=np.ndarray>
... ...
rAw (face, Y, Xp1) float32 421kB dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
rAz (face, Yp1, Xp1) float32 421kB dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
* time (time) datetime64[ns] 24B 1992-01-16T12:00:00 ... 1992-03-16T1...
time_bnds (time, nv) datetime64[ns] 48B dask.array<chunksize=(3, 2), meta=np.ndarray>
* time_midp (time_midp) datetime64[ns] 16B 1992-01-31T12:00:00 1992-03-01T...
timestep (time) int64 24B dask.array<chunksize=(1,), meta=np.ndarray>
Dimensions without coordinates: nv
Data variables: (12/13)
UVELMASS1 (Z, face, Y, Xp1) float16 11MB dask.array<chunksize=(25, 7, 45, 45), meta=np.ndarray>
VVELMASS1 (Z, face, Yp1, X) float16 11MB dask.array<chunksize=(25, 7, 45, 45), meta=np.ndarray>
WVELMASS1 (Zl, face, Y, X) float16 11MB dask.array<chunksize=(25, 7, 45, 45), meta=np.ndarray>
UVELMASS (time, Z, face, Y, Xp1) float64 126MB 0.0 0.0 0.0 ... 0.0 0.0 0.0
WVELMASS (time, Zl, face, Y, X) float64 126MB 0.0 0.0 0.0 ... 0.0 0.0 0.0
VVELMASS (time, Z, face, Yp1, X) float64 126MB 0.0 0.0 0.0 ... 0.0 0.0 0.0
... ...
SALT_snap (time_midp, Z, face, Y, X) float64 84MB 31.5 31.61 ... 82.64 82.5
ETAN (time, face, Y, X) float64 3MB -0.01716 -0.0167 ... -0.05147
ETAN_snap (time_midp, face, Y, X) float64 2MB -0.02574 ... -0.04289
utrans (time, Z, face, Y, Xp1) float64 126MB dask.array<chunksize=(3, 50, 13, 90, 90), meta=np.ndarray>
vtrans (time, Z, face, Yp1, X) float64 126MB dask.array<chunksize=(3, 50, 13, 90, 90), meta=np.ndarray>
wtrans (time, Zl, face, Y, X) float64 126MB dask.array<chunksize=(3, 50, 13, 90, 90), meta=np.ndarray>
Attributes: (12/16)
OceanSpy_description: ECCO v4r4 3D dataset, ocean simulations on LL...
OceanSpy_face_connections: {'face': {0: {'X': ((12, 'Y', False), (3, 'X'...
OceanSpy_grid_coords: {'Y': {'Y': None, 'Yp1': -0.5}, 'X': {'X': No...
OceanSpy_name: ECCO_v4r4
OceanSpy_parameters: {'rSphere': 6371.0, 'eq_state': 'jmd95', 'rho...
date_created: Mon Dec 30 11:13:26 2019
... ...
geospatial_vertical_max: -5.0
geospatial_vertical_min: -5906.25
nx: 90
ny: 90
nz: 50
title: ECCOv4 MITgcm grid information Dimensions: face : 13Y : 90X : 90Z : 50Yp1 : 90Xp1 : 90Zp1 : 51Zl : 50Zu : 50time : 3nv : 2time_midp : 2
Coordinates: (42)
CS
(face, Y, X)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YC XC long_name : AngleCS units :
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
Depth
(face, Y, X)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : XC YC long_name : ocean depth standard_name : ocean_depth units : m
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
HFacC
(Z, face, Y, X)
float32
dask.array<chunksize=(50, 13, 90, 90), meta=np.ndarray>
long_name : vertical fraction of open cell standard_name : cell_vertical_fraction units :
Array
Chunk
Bytes
20.08 MiB
20.08 MiB
Shape
(50, 13, 90, 90)
(50, 13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
50
1
90
90
13
HFacS
(Z, face, Yp1, X)
float32
dask.array<chunksize=(50, 13, 90, 90), meta=np.ndarray>
long_name : vertical fraction of open cell standard_name : cell_vertical_fraction_at_v_location units :
Array
Chunk
Bytes
20.08 MiB
20.08 MiB
Shape
(50, 13, 90, 90)
(50, 13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
50
1
90
90
13
HFacW
(Z, face, Y, Xp1)
float32
dask.array<chunksize=(50, 13, 90, 90), meta=np.ndarray>
long_name : vertical fraction of open cell standard_name : cell_vertical_fraction_at_u_location units :
Array
Chunk
Bytes
20.08 MiB
20.08 MiB
Shape
(50, 13, 90, 90)
(50, 13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
50
1
90
90
13
PHrefC
(Z)
float32
dask.array<chunksize=(50,), meta=np.ndarray>
long_name : Reference Hydrostatic Pressure standard_name : cell_reference_pressure units : m2 s-2
Array
Chunk
Bytes
200 B
200 B
Shape
(50,)
(50,)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
50
1
PHrefF
(Zp1)
float32
dask.array<chunksize=(51,), meta=np.ndarray>
long_name : Reference Hydrostatic Pressure standard_name : cell_reference_pressure units : m2 s-2
Array
Chunk
Bytes
204 B
204 B
Shape
(51,)
(51,)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
51
1
SN
(face, Y, X)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YC XC long_name : AngleSN units :
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
X
(X)
int64
0 1 2 3 4 5 6 ... 84 85 86 87 88 89
axis : X long_name : x-dimension of the t grid swap_dim : XC array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]) XC
(face, Y, X)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YC XC long_name : longitude units : degrees_east
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
XG
(face, Yp1, Xp1)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YG XG long_name : longitude units : degrees_east
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
Xp1
(Xp1)
int64
0 1 2 3 4 5 6 ... 84 85 86 87 88 89
axis : X c_grid_axis_shift : -0.5 long_name : x-dimension of the u grid swap_dim : XG array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]) Y
(Y)
int64
0 1 2 3 4 5 6 ... 84 85 86 87 88 89
axis : Y long_name : y-dimension of the t grid swap_dim : YC array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]) YC
(face, Y, X)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YC XC long_name : latitude units : degrees_north
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
YG
(face, Yp1, Xp1)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
long_name : latitude units : degrees_north
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
Yp1
(Yp1)
int64
0 1 2 3 4 5 6 ... 84 85 86 87 88 89
axis : Y c_grid_axis_shift : -0.5 long_name : y-dimension of the v grid swap_dim : YG array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]) Z
(Z)
float32
-5.0 -15.0 ... -5.906e+03
long_name : vertical coordinate of cell center positive : down standard_name : depth units : m array([-5.000000e+00, -1.500000e+01, -2.500000e+01, -3.500000e+01,
-4.500000e+01, -5.500000e+01, -6.500000e+01, -7.500500e+01,
-8.502500e+01, -9.509500e+01, -1.053100e+02, -1.158700e+02,
-1.271500e+02, -1.397400e+02, -1.544700e+02, -1.724000e+02,
-1.947350e+02, -2.227100e+02, -2.574700e+02, -2.999300e+02,
-3.506800e+02, -4.099300e+02, -4.774700e+02, -5.527100e+02,
-6.347350e+02, -7.224000e+02, -8.144700e+02, -9.097400e+02,
-1.007155e+03, -1.105905e+03, -1.205535e+03, -1.306205e+03,
-1.409150e+03, -1.517095e+03, -1.634175e+03, -1.765135e+03,
-1.914150e+03, -2.084035e+03, -2.276225e+03, -2.491250e+03,
-2.729250e+03, -2.990250e+03, -3.274250e+03, -3.581250e+03,
-3.911250e+03, -4.264250e+03, -4.640250e+03, -5.039250e+03,
-5.461250e+03, -5.906250e+03], dtype=float32) Zl
(Zl)
float32
0.0 -10.0 ... -5.244e+03 -5.678e+03
long_name : vertical coordinate of upper cell interface positive : down standard_name : depth_at_lower_w_location units : m array([ 0. , -10. , -20. , -30. , -40. , -50. , -60. ,
-70. , -80.01, -90.04, -100.15, -110.47, -121.27, -133.03,
-146.45, -162.49, -182.31, -207.16, -238.26, -276.68, -323.18,
-378.18, -441.68, -513.26, -592.16, -677.31, -767.49, -861.45,
-958.03, -1056.28, -1155.53, -1255.54, -1356.87, -1461.43, -1572.76,
-1695.59, -1834.68, -1993.62, -2174.45, -2378. , -2604.5 , -2854. ,
-3126.5 , -3422. , -3740.5 , -4082. , -4446.5 , -4834. , -5244.5 ,
-5678. ], dtype=float32) Zp1
(Zp1)
float32
0.0 -10.0 ... -5.678e+03 -6.134e+03
long_name : vertical coordinate of cell interface positive : down standard_name : depth_at_w_location units : m array([ 0. , -10. , -20. , -30. , -40. , -50. , -60. ,
-70. , -80.01, -90.04, -100.15, -110.47, -121.27, -133.03,
-146.45, -162.49, -182.31, -207.16, -238.26, -276.68, -323.18,
-378.18, -441.68, -513.26, -592.16, -677.31, -767.49, -861.45,
-958.03, -1056.28, -1155.53, -1255.54, -1356.87, -1461.43, -1572.76,
-1695.59, -1834.68, -1993.62, -2174.45, -2378. , -2604.5 , -2854. ,
-3126.5 , -3422. , -3740.5 , -4082. , -4446.5 , -4834. , -5244.5 ,
-5678. , -6134.5 ], dtype=float32) Zu
(Zu)
float32
-10.0 -20.0 ... -6.134e+03
long_name : vertical coordinate of lower cell interface positive : down standard_name : depth_at_upper_w_location units : m array([ -10. , -20. , -30. , -40. , -50. , -60. , -70. ,
-80.01, -90.04, -100.15, -110.47, -121.27, -133.03, -146.45,
-162.49, -182.31, -207.16, -238.26, -276.68, -323.18, -378.18,
-441.68, -513.26, -592.16, -677.31, -767.49, -861.45, -958.03,
-1056.28, -1155.53, -1255.54, -1356.87, -1461.43, -1572.76, -1695.59,
-1834.68, -1993.62, -2174.45, -2378. , -2604.5 , -2854. , -3126.5 ,
-3422. , -3740.5 , -4082. , -4446.5 , -4834. , -5244.5 , -5678. ,
-6134.5 ], dtype=float32) drC
(Zp1)
float32
dask.array<chunksize=(51,), meta=np.ndarray>
long_name : cell z size standard_name : cell_z_size_at_w_location units : m
Array
Chunk
Bytes
204 B
204 B
Shape
(51,)
(51,)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
51
1
drF
(Z)
float32
dask.array<chunksize=(50,), meta=np.ndarray>
long_name : cell z size standard_name : cell_z_size units : m
Array
Chunk
Bytes
200 B
200 B
Shape
(50,)
(50,)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
50
1
dxC
(face, Y, Xp1)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YC XG long_name : cell x size standard_name : cell_x_size_at_u_location units : m
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
dxG
(face, Yp1, X)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YG XC long_name : cell x size standard_name : cell_x_size_at_v_location units : m
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
dyC
(face, Yp1, X)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YG XC long_name : cell y size standard_name : cell_y_size_at_v_location units : m
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
dyG
(face, Y, Xp1)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YC XG long_name : cell y size standard_name : cell_y_size_at_u_location units : m
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
face
(face)
int64
0 1 2 3 4 5 6 7 8 9 10 11 12
long_name : index of llc grid tile array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) k
(Z)
int64
dask.array<chunksize=(50,), meta=np.ndarray>
axis : Z long_name : z-dimension of the t grid swap_dim : Z
Array
Chunk
Bytes
400 B
400 B
Shape
(50,)
(50,)
Dask graph
1 chunks in 2 graph layers
Data type
int64 numpy.ndarray
50
1
k_l
(Zl)
int64
dask.array<chunksize=(50,), meta=np.ndarray>
axis : Z c_grid_axis_shift : -0.5 long_name : z-dimension of the w grid swap_dim : Zl
Array
Chunk
Bytes
400 B
400 B
Shape
(50,)
(50,)
Dask graph
1 chunks in 2 graph layers
Data type
int64 numpy.ndarray
50
1
k_p1
(Zp1)
int64
dask.array<chunksize=(51,), meta=np.ndarray>
axis : Z c_grid_axis_shift : [-0.5, 0.5] long_name : z-dimension of the w grid swap_dim : Zp1
Array
Chunk
Bytes
408 B
408 B
Shape
(51,)
(51,)
Dask graph
1 chunks in 2 graph layers
Data type
int64 numpy.ndarray
51
1
k_u
(Zu)
int64
dask.array<chunksize=(50,), meta=np.ndarray>
axis : Z c_grid_axis_shift : 0.5 long_name : z-dimension of the w grid swap_dim : Zu
Array
Chunk
Bytes
400 B
400 B
Shape
(50,)
(50,)
Dask graph
1 chunks in 2 graph layers
Data type
int64 numpy.ndarray
50
1
maskC
(Z, face, Y, X)
int8
dask.array<chunksize=(50, 13, 90, 90), meta=np.ndarray>
long_name : mask denoting wet point at center standard_name : sea_binary_mask_at_t_location
Array
Chunk
Bytes
5.02 MiB
5.02 MiB
Shape
(50, 13, 90, 90)
(50, 13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
int8 numpy.ndarray
50
1
90
90
13
maskS
(Z, face, Yp1, X)
int8
dask.array<chunksize=(50, 13, 90, 90), meta=np.ndarray>
long_name : mask denoting wet point at interface standard_name : cell_vertical_fraction_at_v_location
Array
Chunk
Bytes
5.02 MiB
5.02 MiB
Shape
(50, 13, 90, 90)
(50, 13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
int8 numpy.ndarray
50
1
90
90
13
maskW
(Z, face, Y, Xp1)
int8
dask.array<chunksize=(50, 13, 90, 90), meta=np.ndarray>
long_name : mask denoting wet point at interface standard_name : cell_vertical_fraction_at_u_location
Array
Chunk
Bytes
5.02 MiB
5.02 MiB
Shape
(50, 13, 90, 90)
(50, 13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
int8 numpy.ndarray
50
1
90
90
13
rA
(face, Y, X)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YC XC long_name : cell area standard_name : cell_area units : m2
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
rAs
(face, Yp1, X)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YG XC long_name : cell area standard_name : cell_area_at_v_location units : m2
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
rAw
(face, Y, Xp1)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YG XC long_name : cell area standard_name : cell_area_at_u_location units : m2
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
rAz
(face, Yp1, Xp1)
float32
dask.array<chunksize=(13, 90, 90), meta=np.ndarray>
coordinate : YG XG long_name : cell area standard_name : cell_area_at_f_location units : m
Array
Chunk
Bytes
411.33 kiB
411.33 kiB
Shape
(13, 90, 90)
(13, 90, 90)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
90
90
13
time
(time)
datetime64[ns]
1992-01-16T12:00:00 ... 1992-03-...
axis : T bounds : time_bnds long_name : center time of averaging period array(['1992-01-16T12:00:00.000000000', '1992-02-15T12:00:00.000000000',
'1992-03-16T12:00:00.000000000'], dtype='datetime64[ns]') time_bnds
(time, nv)
datetime64[ns]
dask.array<chunksize=(3, 2), meta=np.ndarray>
long_name : time bounds of averaging period
Array
Chunk
Bytes
48 B
48 B
Shape
(3, 2)
(3, 2)
Dask graph
1 chunks in 2 graph layers
Data type
datetime64[ns] numpy.ndarray
2
3
time_midp
(time_midp)
datetime64[ns]
1992-01-31T12:00:00 1992-03-01T1...
long_name : Mid-points of center time of averaging period array(['1992-01-31T12:00:00.000000000', '1992-03-01T12:00:00.000000000'],
dtype='datetime64[ns]') timestep
(time)
int64
dask.array<chunksize=(1,), meta=np.ndarray>
long_name : model timestep number
Array
Chunk
Bytes
24 B
8 B
Shape
(3,)
(1,)
Dask graph
3 chunks in 2 graph layers
Data type
int64 numpy.ndarray
3
1
Data variables: (13)
UVELMASS1
(Z, face, Y, Xp1)
float16
dask.array<chunksize=(25, 7, 45, 45), meta=np.ndarray>
long_name : X-Comp of Geometry-Weighted Velocity (m/s) mate : VVELMASS original_output : monthly mean standard_name : UVELMASS units : m/s
Array
Chunk
Bytes
10.04 MiB
692.14 kiB
Shape
(50, 13, 90, 90)
(25, 7, 45, 45)
Dask graph
16 chunks in 2 graph layers
Data type
float16 numpy.ndarray
50
1
90
90
13
VVELMASS1
(Z, face, Yp1, X)
float16
dask.array<chunksize=(25, 7, 45, 45), meta=np.ndarray>
long_name : Y-Comp of Geometry-Weighted Velocity (m/s) mate : UVELMASS original_output : monthly mean standard_name : VVELMASS units : m/s
Array
Chunk
Bytes
10.04 MiB
692.14 kiB
Shape
(50, 13, 90, 90)
(25, 7, 45, 45)
Dask graph
16 chunks in 2 graph layers
Data type
float16 numpy.ndarray
50
1
90
90
13
WVELMASS1
(Zl, face, Y, X)
float16
dask.array<chunksize=(25, 7, 45, 45), meta=np.ndarray>
long_name : Vertical Comp of Velocity (m/s) original_output : monthly mean standard_name : upward_sea_water_velocity units : m/s
Array
Chunk
Bytes
10.04 MiB
692.14 kiB
Shape
(50, 13, 90, 90)
(25, 7, 45, 45)
Dask graph
16 chunks in 2 graph layers
Data type
float16 numpy.ndarray
50
1
90
90
13
UVELMASS
(time, Z, face, Y, Xp1)
float64
0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[[[[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[ 4.12292480e-02, 3.69567871e-02, 3.78723145e-02, ...,
2.51617432e-02, 2.88391113e-02, 3.23791504e-02],
[ 5.52978516e-02, 5.51452637e-02, 5.87768555e-02, ...,
3.08990479e-02, 3.22570801e-02, 3.43017578e-02],
[ 7.32421875e-02, 7.67211914e-02, 8.12377930e-02, ...,
3.92761230e-02, 3.82080078e-02, 3.82690430e-02]],
[[ 8.83178711e-02, 9.33837891e-02, 9.55810547e-02, ...,
4.92248535e-02, 4.67834473e-02, 4.54101562e-02],
[ 8.78906250e-02, 9.29565430e-02, 9.16137695e-02, ...,
5.92651367e-02, 5.60302734e-02, 5.37109375e-02],
[ 7.05566406e-02, 7.40356445e-02, 7.05566406e-02, ...,
6.74438477e-02, 6.48803711e-02, 6.26831055e-02],
...
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00]],
[[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]]]],
shape=(3, 50, 13, 90, 90)) WVELMASS
(time, Zl, face, Y, X)
float64
0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[[[[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[-0.00000000e+00, -0.00000000e+00, -0.00000000e+00, ...,
-0.00000000e+00, -0.00000000e+00, -0.00000000e+00],
[-0.00000000e+00, -0.00000000e+00, -0.00000000e+00, ...,
-0.00000000e+00, -0.00000000e+00, -0.00000000e+00],
[-0.00000000e+00, -0.00000000e+00, -0.00000000e+00, ...,
-0.00000000e+00, -0.00000000e+00, -0.00000000e+00]],
[[-0.00000000e+00, -0.00000000e+00, -0.00000000e+00, ...,
-0.00000000e+00, -0.00000000e+00, -0.00000000e+00],
[-0.00000000e+00, -0.00000000e+00, -0.00000000e+00, ...,
-0.00000000e+00, -0.00000000e+00, -0.00000000e+00],
[-0.00000000e+00, -0.00000000e+00, -0.00000000e+00, ...,
-0.00000000e+00, -0.00000000e+00, -0.00000000e+00],
...
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00]],
[[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]]]],
shape=(3, 50, 13, 90, 90)) VVELMASS
(time, Z, face, Yp1, X)
float64
0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[[[[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[ 4.76074219e-02, 3.91235352e-02, 3.56445312e-02, ...,
-7.71713257e-03, -7.88116455e-03, -7.05337524e-03],
[ 5.32226562e-02, 3.98559570e-02, 3.46069336e-02, ...,
-6.88171387e-03, -7.14874268e-03, -6.40487671e-03],
[ 5.47485352e-02, 3.80249023e-02, 3.35083008e-02, ...,
-2.93350220e-03, -4.25720215e-03, -5.00869751e-03]],
[[ 5.23986816e-02, 3.51562500e-02, 3.52172852e-02, ...,
2.58636475e-03, 1.02579594e-04, -2.82096863e-03],
[ 4.85229492e-02, 3.37829590e-02, 4.23889160e-02, ...,
9.02557373e-03, 5.72204590e-03, 3.54766846e-04],
[ 4.43725586e-02, 3.55224609e-02, 5.53588867e-02, ...,
1.63116455e-02, 1.20391846e-02, 3.94058228e-03],
...
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00]],
[[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]]]],
shape=(3, 50, 13, 90, 90)) SALT
(time, Z, face, Y, X)
float64
33.0 33.06 33.12 ... 33.06 33.0
array([[[[[33.00000034, 33.05683374, 33.11558891, ..., 33.11558891,
33.05683374, 33.00000034],
[33.05683374, 33.00000069, 33.05893526, ..., 33.05893526,
33.00000069, 33.05683374],
[33.11558891, 33.05893526, 33.00000138, ..., 33.00000138,
33.05893526, 33.11558891],
...,
[33.11558891, 33.05893526, 33.00000138, ..., 33.00000138,
33.05893526, 33.11558891],
[33.05683374, 33.00000069, 33.05893526, ..., 33.05893526,
33.00000069, 33.05683374],
[33.00000034, 33.05683374, 33.11558891, ..., 33.11558891,
33.05683374, 33.00000034]],
[[33.00000034, 33.05683374, 33.11558891, ..., 33.11558891,
33.05683374, 33.00000034],
[33.05683374, 33.00000069, 33.05893526, ..., 33.05893526,
33.00000069, 33.05683374],
[33.11558891, 33.05893526, 33.00000138, ..., 33.00000138,
33.05893526, 33.11558891],
...
[33.11558891, 33.05893526, 33.00000138, ..., 33.00000138,
33.05893526, 33.11558891],
[33.05683374, 33.00000069, 33.05893526, ..., 33.05893526,
33.00000069, 33.05683374],
[33.00000034, 33.05683374, 33.11558891, ..., 33.11558891,
33.05683374, 33.00000034]],
[[33.00000034, 33.05683374, 33.11558891, ..., 33.11558891,
33.05683374, 33.00000034],
[33.05683374, 33.00000069, 33.05893526, ..., 33.05893526,
33.00000069, 33.05683374],
[33.11558891, 33.05893526, 33.00000138, ..., 33.00000138,
33.05893526, 33.11558891],
...,
[33.11558891, 33.05893526, 33.00000138, ..., 33.00000138,
33.05893526, 33.11558891],
[33.05683374, 33.00000069, 33.05893526, ..., 33.05893526,
33.00000069, 33.05683374],
[33.00000034, 33.05683374, 33.11558891, ..., 33.11558891,
33.05683374, 33.00000034]]]]], shape=(3, 50, 13, 90, 90)) SALT_snap
(time_midp, Z, face, Y, X)
float64
31.5 31.61 31.73 ... 82.64 82.5
array([[[[[31.50000068, 31.61366748, 31.73117781, ..., 31.73117781,
31.61366748, 31.50000068],
[31.61366748, 31.50000137, 31.61787052, ..., 31.61787052,
31.50000137, 31.61366748],
[31.73117781, 31.61787052, 31.50000275, ..., 31.50000275,
31.61787052, 31.73117781],
...,
[31.73117781, 31.61787052, 31.50000275, ..., 31.50000275,
31.61787052, 31.73117781],
[31.61366748, 31.50000137, 31.61787052, ..., 31.61787052,
31.50000137, 31.61366748],
[31.50000068, 31.61366748, 31.73117781, ..., 31.73117781,
31.61366748, 31.50000068]],
[[31.50000068, 31.61366748, 31.73117781, ..., 31.73117781,
31.61366748, 31.50000068],
[31.61366748, 31.50000137, 31.61787052, ..., 31.61787052,
31.50000137, 31.61366748],
[31.73117781, 31.61787052, 31.50000275, ..., 31.50000275,
31.61787052, 31.73117781],
...
[82.78897227, 82.64733815, 82.50000344, ..., 82.50000344,
82.64733815, 82.78897227],
[82.64208434, 82.50000172, 82.64733815, ..., 82.64733815,
82.50000172, 82.64208434],
[82.50000084, 82.64208434, 82.78897227, ..., 82.78897227,
82.64208434, 82.50000084]],
[[82.50000084, 82.64208434, 82.78897227, ..., 82.78897227,
82.64208434, 82.50000084],
[82.64208434, 82.50000172, 82.64733815, ..., 82.64733815,
82.50000172, 82.64208434],
[82.78897227, 82.64733815, 82.50000344, ..., 82.50000344,
82.64733815, 82.78897227],
...,
[82.78897227, 82.64733815, 82.50000344, ..., 82.50000344,
82.64733815, 82.78897227],
[82.64208434, 82.50000172, 82.64733815, ..., 82.64733815,
82.50000172, 82.64208434],
[82.50000084, 82.64208434, 82.78897227, ..., 82.78897227,
82.64208434, 82.50000084]]]]], shape=(2, 50, 13, 90, 90)) ETAN
(time, face, Y, X)
float64
-0.01716 -0.0167 ... -0.05147
array([[[[-0.01715729, -0.01669768, -0.01641957, ..., -0.01641957,
-0.01669768, -0.01715729],
[-0.01669768, -0.01605222, -0.01558324, ..., -0.01558324,
-0.01605222, -0.01669768],
[-0.01641957, -0.01558324, -0.01491727, ..., -0.01491727,
-0.01558324, -0.01641957],
...,
[-0.01641957, -0.01558324, -0.01491727, ..., -0.01491727,
-0.01558324, -0.01641957],
[-0.01669768, -0.01605222, -0.01558324, ..., -0.01558324,
-0.01605222, -0.01669768],
[-0.01715729, -0.01669768, -0.01641957, ..., -0.01641957,
-0.01669768, -0.01715729]],
[[-0.01715729, -0.01669768, -0.01641957, ..., -0.01641957,
-0.01669768, -0.01715729],
[-0.01669768, -0.01605222, -0.01558324, ..., -0.01558324,
-0.01605222, -0.01669768],
[-0.01641957, -0.01558324, -0.01491727, ..., -0.01491727,
-0.01558324, -0.01641957],
...
[-0.04925871, -0.04674972, -0.04475182, ..., -0.04475182,
-0.04674972, -0.04925871],
[-0.05009303, -0.04815666, -0.04674972, ..., -0.04674972,
-0.04815666, -0.05009303],
[-0.05147186, -0.05009303, -0.04925871, ..., -0.04925871,
-0.05009303, -0.05147186]],
[[-0.05147186, -0.05009303, -0.04925871, ..., -0.04925871,
-0.05009303, -0.05147186],
[-0.05009303, -0.04815666, -0.04674972, ..., -0.04674972,
-0.04815666, -0.05009303],
[-0.04925871, -0.04674972, -0.04475182, ..., -0.04475182,
-0.04674972, -0.04925871],
...,
[-0.04925871, -0.04674972, -0.04475182, ..., -0.04475182,
-0.04674972, -0.04925871],
[-0.05009303, -0.04815666, -0.04674972, ..., -0.04674972,
-0.04815666, -0.05009303],
[-0.05147186, -0.05009303, -0.04925871, ..., -0.04925871,
-0.05009303, -0.05147186]]]], shape=(3, 13, 90, 90)) ETAN_snap
(time_midp, face, Y, X)
float64
-0.02574 -0.02505 ... -0.04289
array([[[[-0.02573593, -0.02504652, -0.02462936, ..., -0.02462936,
-0.02504652, -0.02573593],
[-0.02504652, -0.02407833, -0.02337486, ..., -0.02337486,
-0.02407833, -0.02504652],
[-0.02462936, -0.02337486, -0.02237591, ..., -0.02237591,
-0.02337486, -0.02462936],
...,
[-0.02462936, -0.02337486, -0.02237591, ..., -0.02237591,
-0.02337486, -0.02462936],
[-0.02504652, -0.02407833, -0.02337486, ..., -0.02337486,
-0.02407833, -0.02504652],
[-0.02573593, -0.02504652, -0.02462936, ..., -0.02462936,
-0.02504652, -0.02573593]],
[[-0.02573593, -0.02504652, -0.02462936, ..., -0.02462936,
-0.02504652, -0.02573593],
[-0.02504652, -0.02407833, -0.02337486, ..., -0.02337486,
-0.02407833, -0.02504652],
[-0.02462936, -0.02337486, -0.02237591, ..., -0.02237591,
-0.02337486, -0.02462936],
...
[-0.04104893, -0.0389581 , -0.03729318, ..., -0.03729318,
-0.0389581 , -0.04104893],
[-0.04174419, -0.04013055, -0.0389581 , ..., -0.0389581 ,
-0.04013055, -0.04174419],
[-0.04289322, -0.04174419, -0.04104893, ..., -0.04104893,
-0.04174419, -0.04289322]],
[[-0.04289322, -0.04174419, -0.04104893, ..., -0.04104893,
-0.04174419, -0.04289322],
[-0.04174419, -0.04013055, -0.0389581 , ..., -0.0389581 ,
-0.04013055, -0.04174419],
[-0.04104893, -0.0389581 , -0.03729318, ..., -0.03729318,
-0.0389581 , -0.04104893],
...,
[-0.04104893, -0.0389581 , -0.03729318, ..., -0.03729318,
-0.0389581 , -0.04104893],
[-0.04174419, -0.04013055, -0.0389581 , ..., -0.0389581 ,
-0.04013055, -0.04174419],
[-0.04289322, -0.04174419, -0.04104893, ..., -0.04104893,
-0.04174419, -0.04289322]]]], shape=(2, 13, 90, 90)) utrans
(time, Z, face, Y, Xp1)
float64
dask.array<chunksize=(3, 50, 13, 90, 90), meta=np.ndarray>
Array
Chunk
Bytes
120.51 MiB
120.51 MiB
Shape
(3, 50, 13, 90, 90)
(3, 50, 13, 90, 90)
Dask graph
1 chunks in 10 graph layers
Data type
float64 numpy.ndarray
50
3
90
90
13
vtrans
(time, Z, face, Yp1, X)
float64
dask.array<chunksize=(3, 50, 13, 90, 90), meta=np.ndarray>
Array
Chunk
Bytes
120.51 MiB
120.51 MiB
Shape
(3, 50, 13, 90, 90)
(3, 50, 13, 90, 90)
Dask graph
1 chunks in 10 graph layers
Data type
float64 numpy.ndarray
50
3
90
90
13
wtrans
(time, Zl, face, Y, X)
float64
dask.array<chunksize=(3, 50, 13, 90, 90), meta=np.ndarray>
Array
Chunk
Bytes
120.51 MiB
120.51 MiB
Shape
(3, 50, 13, 90, 90)
(3, 50, 13, 90, 90)
Dask graph
1 chunks in 5 graph layers
Data type
float64 numpy.ndarray
50
3
90
90
13
Indexes: (11)
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
dtype='int64', name='X')) PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
dtype='int64', name='Xp1')) PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
dtype='int64', name='Y')) PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
dtype='int64', name='Yp1')) PandasIndex
PandasIndex(Index([ -5.0, -15.0, -25.0,
-35.0, -45.0, -55.0,
-65.0, -75.00499725341797, -85.0250015258789,
-95.09500122070312, -105.30999755859375, -115.87000274658203,
-127.1500015258789, -139.74000549316406, -154.47000122070312,
-172.39999389648438, -194.73500061035156, -222.7100067138672,
-257.4700012207031, -299.92999267578125, -350.67999267578125,
-409.92999267578125, -477.4700012207031, -552.7100219726562,
-634.7349853515625, -722.4000244140625, -814.469970703125,
-909.739990234375, -1007.155029296875, -1105.905029296875,
-1205.5350341796875, -1306.2049560546875, -1409.1500244140625,
-1517.094970703125, -1634.175048828125, -1765.135009765625,
-1914.1500244140625, -2084.034912109375, -2276.22509765625,
-2491.25, -2729.25, -2990.25,
-3274.25, -3581.25, -3911.25,
-4264.25, -4640.25, -5039.25,
-5461.25, -5906.25],
dtype='float32', name='Z')) PandasIndex
PandasIndex(Index([ 0.0, -10.0, -20.0,
-30.0, -40.0, -50.0,
-60.0, -70.0, -80.01000213623047,
-90.04000091552734, -100.1500015258789, -110.47000122070312,
-121.2699966430664, -133.02999877929688, -146.4499969482422,
-162.49000549316406, -182.30999755859375, -207.16000366210938,
-238.25999450683594, -276.67999267578125, -323.17999267578125,
-378.17999267578125, -441.67999267578125, -513.260009765625,
-592.1599731445312, -677.3099975585938, -767.489990234375,
-861.4500122070312, -958.030029296875, -1056.280029296875,
-1155.530029296875, -1255.5400390625, -1356.8699951171875,
-1461.4300537109375, -1572.760009765625, -1695.5899658203125,
-1834.6800537109375, -1993.6199951171875, -2174.449951171875,
-2378.0, -2604.5, -2854.0,
-3126.5, -3422.0, -3740.5,
-4082.0, -4446.5, -4834.0,
-5244.5, -5678.0],
dtype='float32', name='Zl')) PandasIndex
PandasIndex(Index([ 0.0, -10.0, -20.0,
-30.0, -40.0, -50.0,
-60.0, -70.0, -80.01000213623047,
-90.04000091552734, -100.1500015258789, -110.47000122070312,
-121.2699966430664, -133.02999877929688, -146.4499969482422,
-162.49000549316406, -182.30999755859375, -207.16000366210938,
-238.25999450683594, -276.67999267578125, -323.17999267578125,
-378.17999267578125, -441.67999267578125, -513.260009765625,
-592.1599731445312, -677.3099975585938, -767.489990234375,
-861.4500122070312, -958.030029296875, -1056.280029296875,
-1155.530029296875, -1255.5400390625, -1356.8699951171875,
-1461.4300537109375, -1572.760009765625, -1695.5899658203125,
-1834.6800537109375, -1993.6199951171875, -2174.449951171875,
-2378.0, -2604.5, -2854.0,
-3126.5, -3422.0, -3740.5,
-4082.0, -4446.5, -4834.0,
-5244.5, -5678.0, -6134.5],
dtype='float32', name='Zp1')) PandasIndex
PandasIndex(Index([ -10.0, -20.0, -30.0,
-40.0, -50.0, -60.0,
-70.0, -80.01000213623047, -90.04000091552734,
-100.1500015258789, -110.47000122070312, -121.2699966430664,
-133.02999877929688, -146.4499969482422, -162.49000549316406,
-182.30999755859375, -207.16000366210938, -238.25999450683594,
-276.67999267578125, -323.17999267578125, -378.17999267578125,
-441.67999267578125, -513.260009765625, -592.1599731445312,
-677.3099975585938, -767.489990234375, -861.4500122070312,
-958.030029296875, -1056.280029296875, -1155.530029296875,
-1255.5400390625, -1356.8699951171875, -1461.4300537109375,
-1572.760009765625, -1695.5899658203125, -1834.6800537109375,
-1993.6199951171875, -2174.449951171875, -2378.0,
-2604.5, -2854.0, -3126.5,
-3422.0, -3740.5, -4082.0,
-4446.5, -4834.0, -5244.5,
-5678.0, -6134.5],
dtype='float32', name='Zu')) PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype='int64', name='face')) PandasIndex
PandasIndex(DatetimeIndex(['1992-01-16 12:00:00', '1992-02-15 12:00:00',
'1992-03-16 12:00:00'],
dtype='datetime64[ns]', name='time', freq=None)) PandasIndex
PandasIndex(DatetimeIndex(['1992-01-31 12:00:00', '1992-03-01 12:00:00'], dtype='datetime64[ns]', name='time_midp', freq=None)) Attributes: (16)
OceanSpy_description : ECCO v4r4 3D dataset, ocean simulations on LLC90 grid (monthly mean output) OceanSpy_face_connections : {'face': {0: {'X': ((12, 'Y', False), (3, 'X', False)), 'Y': (None, (1, 'Y', False))}, 1: {'X': ((11, 'Y', False), (4, 'X', False)), 'Y': ((0, 'Y', False), (2, 'Y', False))}, 2: {'X': ((10, 'Y', False), (5, 'X', False)), 'Y': ((1, 'Y', False), (6, 'X', False))}, 3: {'X': ((0, 'X', False), (9, 'Y', False)), 'Y': (None, (4, 'Y', False))}, 4: {'X': ((1, 'X', False), (8, 'Y', False)), 'Y': ((3, 'Y', False), (5, 'Y', False))}, 5: {'X': ((2, 'X', False), (7, 'Y', False)), 'Y': ((4, 'Y', False), (6, 'Y', False))}, 6: {'X': ((2, 'Y', False), (7, 'X', False)), 'Y': ((5, 'Y', False), (10, 'X', False))}, 7: {'X': ((6, 'X', False), (8, 'X', False)), 'Y': ((5, 'X', False), (10, 'Y', False))}, 8: {'X': ((7, 'X', False), (9, 'X', False)), 'Y': ((4, 'X', False), (11, 'Y', False))}, 9: {'X': ((8, 'X', False), None), 'Y': ((3, 'X', False), (12, 'Y', False))}, 10: {'X': ((6, 'Y', False), (11, 'X', False)), 'Y': ((7, 'Y', False), (2, 'X', False))}, 11: {'X': ((10, 'X', False), (12, 'X', False)), 'Y': ((8, 'Y', False), (1, 'X', False))}, 12: {'X': ((11, 'X', False), None), 'Y': ((9, 'Y', False), (0, 'X', False))}}} OceanSpy_grid_coords : {'Y': {'Y': None, 'Yp1': -0.5}, 'X': {'X': None, 'Xp1': -0.5}, 'Z': {'Z': None, 'Zp1': 0.5, 'Zu': 0.5, 'Zl': -0.5}, 'time': {'time': -0.5, 'time_midp': None}} OceanSpy_name : ECCO_v4r4 OceanSpy_parameters : {'rSphere': 6371.0, 'eq_state': 'jmd95', 'rho0': 1027, 'g': 9.81, 'eps_nh': 0, 'omega': 7.292123516990373e-05, 'c_p': 3986.0, 'tempFrz0': 0.0901, 'dTempFrz_dS': -0.0575} date_created : Mon Dec 30 11:13:26 2019 geospatial_lat_max : 90.0 geospatial_lat_min : -90.0 geospatial_lon_max : 180.0 geospatial_lon_min : -179.9991912841797 geospatial_vertical_max : -5.0 geospatial_vertical_min : -5906.25 nx : 90 ny : 90 nz : 50 title : ECCOv4 MITgcm grid information